Wealth Creation in Rural Communities

Harnessing the Sun as an Alternative Energy Resource: Economic and Social Impacts of PV Use in Electricity Production

by Andrew Mackey Penn State University June 2010

PENNSTATE

supported by the Ford Foundation

Wealth Creation in Rural America

This report is part of the Wealth Creation in Rural America initiative, funded by the Ford Foundation. The aim of the initiative is to help low-wealth rural areas overcome their isolation and integrate into regional economies in ways that increase their own-ership and influence over various kinds of wealth. The initiative has produced nine previous papers, which can be found at http://www. yellowwood.org/wealthcreation.aspx. The goal of this report is to advance the initiative's broad aim of creating a comprehensive framework of community ownership and wealth control models that enhance the social, ecological, and economic well-being of rural areas.

Author

Andrew Mackey is a research associate in the Penn State Department of Architectural Engineering and Center for Sustainability, College of Engineering.

Copyright 2010 The Pennsylvania State University

This publication is available in alternative media on request.

The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. It is the policy of the University to maintain an academic and work environment free of discrimination, including harassment. The Pennsylvania State University prohibits discrimination and harassment against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Discrimination or harassment against faculty, staff, or students will not be tolerated at The Pennsylvania State University. Direct all inquiries regarding the non-discrimination policy to the Affirmative Action Director, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-2801, Tel 814-865-4700/V, 814-863-1150/TTY. MPC110946

Introduction

The need for alternative energy sources is becoming increasingly apparent for a host of reasons: saving the environment for future generations, decreasing home energy to afford warmth and comfort in the winter, decreasing dependence on foreign oil for national security and other national interests, allowing suburban residents to continue working five-day weeks, or elevating the standard of living for impoverished families in America. It's clear that a paradigm shift is necessary if Americans are to sustain their standards of living through their use of energy.

Photovoltaics (PV), or using the energy from the sun to create electricity, can provide an exceptional amount of electricity while decreasing fossil fuel demand and having zero negative direct effects on the environment. The U.S. receives far more energy from the sun in one day over its total land area than it consumes. How do we best capture and utilize this resource? Here, the current state of the PV technology industry and PV workforce training and demand are examined, followed by a case study of a successful workforce development program.

One Size Does Not Fit All (or Fit All Needs): Economic Impacts

PV technology currently uses systems that require heavy subsidization with rebates and incentives to realize financial returns. Further, the range of electric utility rates across the nation makes PV systems extremely economically feasible in some locations and not in others. FindSolar's My Solar Estimator¹ offers a quick estimate of the cost of a PV system and the estimated return based upon an individual's electricity consumption. The estimator is easily configurable for many different PV systems and options.

The Solar Estimator first asks for the user's location in order to calculate costs based on the solar irradiance (a measure of energy from the sun usually in watts per square meter) in the specified location. The user is then asked to indicate the utility company used and one of three measures of electricity consumption: annual electric bill in dollars, annual kilowatts hours of electricity used, or seasonal electric bill. With this information the system calculates PV system size, estimated purchase cost, and savings and benefits from a PV system purchase, including return on investment and number of years to breakeven.

As an illustration, let's look at a residence that uses 8000 kWh annually in State College, Pennsylvania, and a similar one in Richmond, California. The electric utilities used were Allegheny Power (Pennsylvania) with an average per kilowatthr rate of \$0.07/kWh and Pacific Gas & Electric (California) with an average rate of \$0.1647/kWh. (Both rates are from September 2008.)

^{1.} My Solar Estimator. *FindSolar*. Accessed on September 24, 2008 <http://www.findsolar.com/index.php?page=rightforme>

The payback period for the Pennsylvania system is 28–47 years with no property value appreciation. The period for the California system is only 5–10 years. With property value appreciation, the periods become 21–40 years and less than 1–3 years for the Pennsylvania and California systems, respectively. These major differences in payback periods occur for a number of reasons, all of which must be carefully considered when determining the financial feasibility for a PV installation.

One major factor is location-specific. Due to solar irradiance in California, the recommended system size is smaller and lower cost, since fewer panels must be installed to cover the same portion of electricity consumption. A second major factor is the price per kWh of electricity. The monthly electric bill in California is more than twice that in Pennsylvania, and thus monthly savings from the system differ greatly. This situation alone can double the payback period of a similarly sized system. Third, the increase in property values due to PV system installation is assumed to be greater in California because the system savings will be greater there, assuming current rate trends are maintained. For the system in Pennsylvania, the upper threshold of the property value increase is \$7,775, while it is \$23,781 in California.

Both systems are eligible for a federal tax credit of up to \$2,000. The incentivebased difference between the two systems may be found at the state level. The expected California state rebate for the proposed system is \$4,750. These two credits bring the already less expensive California system down from \$24,210 to \$17,460. At the moment, the Pennsylvania system, when used in concert with the aforementioned utility, does not qualify for other rebates or incentives beyond the federal tax credit. This brings the cost of the 3.57 kW Pennsylvania system down to \$30,130. Different rebates and potential cost savings programs may be found in both states and should be investigated on a case-by-case basis.²

In summary, the system in Pennsylvania is more expensive because: (1) the lower solar irradiance requires a bigger system that is more expensive to install; (2) there are very few incentives/rebates for the larger system, which does not help subsidize the financial burden; and (3) purchase of the system will not result in a large property value increase, since the savings will be minimal due to the relatively inexpensive utility rate of \$0.07 /kWh. (There's more information about these FindSolar results in the Appendix.)

COST REDUCTION AND INCREASED BENEFITS

The conversation about alternative energy today includes talk about incentives, which are available for photovoltaics at the utility, state, and national levels.

^{2.} The incentive calculator for California can be found at the California Solar Initiative website: http://www.gosolarcalifornia.ca.gov/. Other programs in Pennsylvania exist, such as the Solar Energy Buy-Back Program: http://www.theenergyco-op.com/solarpower.htm.

These incentives and rebates can be leveraged against the cost of installing solar systems—and should be included in the decision-making process when evaluating the financial feasibility of a system purchase. The different types of utility rates and metering options as well as buy-back programs should also be considered. Here, we look at the different types of incentive programs as well as utility rates and metering options. Please note that the following information generally applies only to grid-tied PV systems.

FORMS OF INCENTIVES

There are three basic forms of PV incentives: federal/state tax credits, state or utility subsidy programs, and performance-based incentives or feed-in tariffs. The best source of information on state and federal incentives is the Database of State Incentives for Renewables & Efficiency³ (DSIRE). This collaborative project between the North Carolina Solar Center and the Interstate Renewable Energy Council is funded by the U.S. Department of Energy. Users of DSIRE may click on any state in the nation or a federal tab, which then provides a list of all incentives in the targeted area with links to explanations.

Incentives are available for various groups such as governments, non-profits, utilities, small-scale generation, businesses, industries, and residences. Some programs offer a one-time rebate/credit. The Residential Solar and Fuel Cell Tax Credit⁴ provides \$2,000 for solar-electric and water systems and \$500 per 0.5 kW for fuel cells. Other programs offer system loans. New Jersey's PSE&G Utility Solar Loan Program offers a 40–60% loan of the cost of the PV system for 10 years at an interest rate of 6.5%. The loan can be repaid in cash or with the signing over of Solar Renewable Energy Certificates (SRECs). After the loan is paid off, the customer has full rights to their SRECs and can sell them at the market value.

Production-based programs that reward an owner/customer per kWh also exist. The NC (North Carolina) GreenPower Production Incentive⁵ rewards PV owners by paying them \$0.15/kWh from the program and an additional \$0.04/kWh from their utility under a power purchase agreement, totaling \$0.19/kWh. Another example of this type of incentive is California's Feed-In Tariff ⁶, which allows customer-generators to sell their generated electricity to the grid at market-based prices. The best source of information on state and federal incentives is the Database of State Incentives for Renewables & Efficiency (DSIRE). This collaborative project between the North Carolina Solar Center and the Interstate Renewable Energy Council is funded by the U.S. Department of Energy. Users of DSIRE may click on any state in the nation or a federal tab, which then provides a list of all incentives in the targeted area with links to explanations.

Incentives are available for various groups such as governments, non-profits, utilities, small-scale generation, businesses, industries, and residences. Some programs offer a one-time rebate/credit. The Residential Solar and Fuel Cell Tax Credit provides \$2,000 for solar-electric and water systems and \$500 per 0.5 kW for fuel cells. Other programs offer system loans. New Jersey's PSE&G Utility Solar Loan Program offers a 40–60% loan of the cost of the PV system for 10 years at an interest rate of 6.5%. The loan can be repaid in cash or with the signing over of Solar Renewable Energy Certificates (SRECs). After the loan is paid off, the customer has full rights to their SRECs and can sell them at the market value.

^{3.} Database of State Incentives for Renewables & Efficiency (DSIRE), accessed September 30, 2008. North Carolina Solar Center.

^{4.} Residential Solar and Fuel Cell Tax Credit. DSIRE, Accessed August 1 and September 30, 2008. http://www.dsireusa.org/library/includes/incentive2.cfm?incentive_code=us37f&state=federal¤tpageid=1&ee=1%

NC GreenPower Production Incentive. DSIRE, accessed January 14 and September 30, 2008. <.

^{6.} California Feed-In Tariff. DSIRE, Accessed February 28 and September 30, 2008. ."/p>

Job Creation and Support: Social Impacts

The solar industry, specifically photovoltaics, has a great capacity to create and support jobs in manufacturing, education, design, sales, installation, maintenance, auditing, and many other categories. In short, the PV industry has the potential to employ thousands of individuals.

A number of different organizations have done workforce calculations for the photovoltaic and renewable energy industries.^{7, 8, 9} The consensus is that there are and will continue to be jobs and job opportunities in varying industry sectors. To capture these opportunities, states have created incentive programs focused on industry growth. There are three such programs in four states located within the Appalachian region. Virginia and West Virginia have the Solar Manufacturing Incentive Grant (SMIG) Program¹⁰. This program offers a maximum of \$4.5 million per year paid at \$0.75 per Watt, decreasing over the course of six years, for panels sold in a calendar year. North Carolina has the Green Business Fund 11 to encourage the development and commercialization of "promising" renewable energy and green building technologies. This program provides grants up to \$100,000 to businesses with fewer than 100 employees. New York also has similar programs, such as the NYSERDA Renewable, Clean Energy, and Energy Efficient Product Manufacturing and Incentive Program¹² that provide phased payments to manufacturers looking to develop or expand facilities to produce eligible products.

Despite the potential for growth in the industry and numerous training institutions, employers are having trouble finding qualified workers. In California¹³ —an example of an already established and successful solar industry—two out of three employers indicate difficulty finding entry-level employees while three out of four mention difficulty finding experienced employees.

- 9. 2007 US Solar Industry: Year in Review. Solar Energy Industries Association and the Prometheus Institute, September 30, 2008. http://seia.org/galleries/pdf/Year_in_Review_2007.pdf
- Solar Manufacturing Incentive Grant (SMIG) Program. DSIRE, accessed November 12, 2007; October 1, 2008. http://www.dsireusa.org/library/includes/incentive2.cfm?incentive_code=va08f&state=va ¤tpageid=1&re=1&ee=1>.
- 11. North Carolina Green Business Fund. DSIRE, accessed April 3 and October 1, 2008.
- 12. NYSERDA Renewable, Clean Energy, and Energy Efficient Product manufacturing and Incentive Program. DSIRE, accessed September 10, 2007; October 1, 2008. ">http://www.dsireusa.org/library/includes/incentive2.cfm?incentive_code=ny41f&state=ny¤tpageid=1&re=1&eee=1>">http://www.dsireusa.org/library/includes/incentive2.cfm?inc
- 13. California's Solar Industry & Workforce Study Key Findings, 2008. Centers of Excellence. California Community Colleges, accessed October 10, 2008. http://coeccc.net/solar/>

According to the American Solar Energy Society's report, Renewable Energy and Energy Efficiency: Economic Drivers for the 21st Cent<mark>ury, *there were* and a state of the st</mark> 450,000 jobs in renewable energy in 200<mark>6. In N</mark>avigant *Consulting's report*, Economic Impacts of Extending Federal Solar Tax Credits, an industry analysis conservatively predicted 2,150 MW of PV installations in 2016 with the current tax credit and 24.2 job-years per MW installed. The Solar Energy Industries Association and the Prometheus Institute report, U.S. Solar Industry: Year in Review, predicted that there would be 62,000 new jobs in the solar energy industry by 2015.

^{7.} R. Bezdek (2007), *Renewable Energy and Energy Efficiency: Economic Drivers for the 21st Century*. Boulder, CO: American Solar Energy Society.

^{8.} Navigant Consulting, Inc. (2008), *Economic Impacts of Extending Federal Solar Tax Credits*. Solar Energy Research and Education Foundation. Burlington, MA: Navigant Consulting.

When employers in California were asked to describe the preferred educational background of employees, 58% indicated that installers should have primarily work experience and no degree. However, when asked about their interest in community college programs, 88% were interested in a certificate program for entry-level installers and 83% cited interest in a 2-year degree program. Clearly, those community colleges that offer long- and short-term educational programs with on-the-job training will be able to provide the number and quality of workers needed by this growth industry.

Training

JOB OPPORTUNITY IN NECESSARY TRAINING

Countless job opportunities exist in the PV industry. The broad job categories include manufacturing parts, assembling the panels, installing the panels, and maintaining and repairing the systems. These broad categories can be broken down into smaller jobs carried out by many different skilled laborers, such as roofers, electricians, and sheet metal workers. PV system utilization is the most labor-intensive technology of all other renewables per MW installed.¹⁴

The implementation of these systems requires sales people capable of communicating the benefits of PV use as well as performing energy audits to identify opportunities to increase energy efficiency (a valuable step before moving forward with a PV system). Calculations must be performed to determine system feasibility, financing options, and potential gains. The system can then be carefully designed on a site-by-site basis to ensure productivity and efficiency. Once designed, the system must be properly installed by well-trained individuals knowledgeable about general construction practices, structural roofing requirements, and electricity. Finally, the system may need to be maintained, potentially creating system maintenance positions. Let's take a look at the different post-manufacturing and assembly jobs, focusing primarily on the needs for and skills of a system installer since this step is exceptionally complex and can be quite dangerous.

General Building Practices. Prospective laborers in the PV industry must first learn all about basic building and construction. Skills needed include basic math, blueprint reading, carpentry, hand and power tool operation, and construction-site awareness/safety. These skills can be obtained via a few different routes, such as high school "shop"-type classes, on-the-job training for young apprentices, or pre-apprenticeship training programs such as RichmondBUILD.

Countless job opportunities exist in the PV industry. The broad job categories include manufacturing parts, assembling the panels, installing the panels, and maintaining and repairing the systems. These broad categories can be broken down into smaller jobs carried out by many different skilled laborers, such as roofers, electricians, and sheet metal workers. PV system utilization is the most laborintensive technology of all other renewables per MW installed.

^{14.} *Community Jobs in the Green Economy*. Apollo Alliance and Urban Habitat. Accessed June 20, 2008 http://www.apolloalliance.org/downloads/resources_community_jobs_in_the_green_economy. pdf>.

Photovoltaic System Implementation. Photovoltaic system implementation involves marketing and sales, siting and designing, installation, and maintenance; all of which utilize different skill sets. The person who sells a system is often not the person who installs it on the roof. While some individuals may be capable of attaining all the skills and knowledge needed to educate, design, install, and maintain a system, training individuals to perform specific tasks and developing an integrated approach can be achieved faster and with less investment in human capital.

Marketing and Sales. Selling a PV system is no simple task. Anything with large initial capital costs and extended payback periods is a tough sell. Many factors must be considered to determine customer needs and desires, final component price, total installed system cost, and final rate of return to the customer. The person or team responsible for marketing and selling systems must know the local market, including incentives and metering practices, available technology and specific benefits related to each technology, and differences between stand-alone and grid-tied systems (including the purpose and feasibility of each). The team typically includes one person who helps the customer determine their specific system goals and which technologies would be the most suitable, and a project estimator who is familiar with proposed technologies and the costs of materials and manpower to implement them.

Different marketing approaches can be used to gain customer recognition and interest, including face-to-face, telephone, mail, Internet, press, radio, or TV advertising. Effective marketing usually involves a careful balance of marketing mediums and commitments that would be best determined by someone familiar with and experienced in both marketing strategy and PV products.

It's also possible to attract business through certifications and search databases. Websites such as the North American Board of Certified Energy Practitioners¹⁵ appear at the top of a Google search when looking for solar installers. This website provides a map interface to search for installers who have completed the necessary steps to receive a NABCEP certification. Getting on this list is a surefire way to increase your market presence.

Siting and Designing. Properly determining the location and size of a PV system is not a simple task. Many factors must be taken into consideration. It should be noted that grid-tied systems are slightly easier to design and implement, as the utility grid functions as a large, relatively inexhaustible, back-up power generator.

Designing a system involves a site survey and shading analysis, sizing and balancing of components, mounting and building integration, as well as

RichmondBUILD

The RichmondBUILD Preapprenticeship Construction Skills and Green Jobs Training Academy was first developed to create employment and career opportunities for Richmond residents and to implement a violence-reduction strategy in the community. Established in 2007, it quickly become a model of an effective and broad public / private partnership focused on developing talent and skills in the construction and renewable energy fields.

The 14-week intensive program includes training in safety, first aid / CPR, power tools, framing, sheet rock, basic electrical, roofing, scaffolding, basic plumbing, basic welding, eco literacy, energy efficiency and solar installation training.

To date, RichmondBUILD graduates have a 90% placement rate with an average wage of \$18.33/hour.

For more information, visit: http://www.ci.richmond.ca.us/ index.aspx?nid=1243

Find Certified Installers. North American Board of Certified Energy Practitioners, accessed August 26, 2008. http://www.nabcep.org/map.cfm?normalflag=yes>.

financial/incentive considerations.^{16, 17} The site survey and shading analysis are necessary to ensure maximum solar irradiance and minimal shading of the panels. This includes determining the orientation of the panels relative to solar noon. Generally, south-facing panels are preferred; however, many considerations can result in a non-south orientation. The mounting angle from horizontal (horizontal is sometimes preferred) depends upon time of year and site latitude. For example, if the system is mounted on a seasonal residence, such as a summerhouse, fall hunting shack, or winter ski cabin, the system should be optimized for maximum production during time of use. Also, if the system is grid-tied and in a region with varying electricity rate structures based upon peak utility rates, a system could be oriented for maximum production during peak utility rates. This of course depends upon whether the system is utilizing an energy storage system.

In the shading analysis, the duration and type of shading that will fall on the mounted array are determined using a variety of methods, including a site plan and sun path diagram, sun path diagram on acetate, or a shading analyzer such as a digital camera and accompanying software or the Solar Pathfinder. These tools allow the designer to determine the shadow outline for a given site. This outline must be analyzed with a full year in mind, taking into account the varying angles of the sun, growth of new flora, stages of coniferous and deciduous trees, as well as new construction.

The sizing and balancing of components differs for each system. Proper system size is determined by a series of decisions and types of information: stand-alone or grid-tied, energy demand, load separation, percent of load to be covered by PV, energy storage, and seasonal demand. Components in a given PV system may include the PV cells themselves, batteries or another storage mechanism, a charge controller, an inverter, a back-up generator, and a system control mechanism—all have very precise yet varying specifications that must be in perfect balance for the system to function efficiently.

Installation. The physical installation of the PV system has three basic phases: mounting system and roof considerations; module fixing and external wiring; and internal wiring and component set-up, such as inverters, charge controllers, and batteries. Note that installation basics described here pertain primarily to an additive, grid-tied PV system. This means that the panels are attached as a super-structure and function solely to produce electricity. They are not used for weatherproofing, heat insulation, or sun shading. Furthermore, the system utilizes a grid-tied inverter and thus does not utilize charge controllers or batter banks—both of which further complicate installation procedures.

^{16.} R. Messenger and J. Ventre (2000), Photovoltaic Systems Engineering. Boca Raton, FL: CRC P.

^{17.} Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers. Detroit, MI: Earthscan/James & James, 2008.

Many considerations and techniques are involved in properly mounting an array to a roof. There are many different roof shapes, such as ridge, mansard, mono-pitched, and flat. There are also different types of roof construction, such as rafter, collar beam, truss, or flat. To further increase the number of considerations, there are numerous roofing materials such as tiles, concrete, shingles, sheets, slate, corrugated panels, flat panels, liquid plastics, etc. Proper mounting of the rails requires an understanding of the roof material and possibly consultation with a structural engineer when dealing with loading and/or making changes to a truss roof. Roof penetrations must be carefully executed, especially when dealing with steel or flat roofs due to the difficulty in maintaining a waterproof seal.

Load considerations include wind-related pushing and pulling, the weight of the modules and rails, and snow. The gap between the modules and the roof may not be overly large or the modules excessively close to the edge of the roof so that wind can be easily caught beneath the panels. However, the gap must be sufficient to allow adequate ventilation for cooling and not trap leaves and debris that would prevent rain shedding.

Due to the intended longevity of PV systems, corrosion resistance is also a large concern when considering mounting hardware. It is important to use high-quality aluminum and/or stainless hardware and compatible metals. For example, do not use brass screws on galvanized rails, hooks, or clips. Also, UV-resistant equipment such as conduit, junction boxes, and wire ties must be used.

Special care must be taken when dealing with DC installations, specifically solar. The moment the panel comes out of the box it is "live", producing DC current and voltage. The more panels that are plugged together in series, the more voltage is produced. Residential installations can be upwards of 600 volts while commercial/industrial systems can reach 1,000 volts. The combiner box, which takes the series wired strings and combines them into parallel arrays in order to increase the current, can be exceptionally dangerous if proper wiring techniques and devices are not used.

Due to the intrinsically live nature of PV arrays certain wiring procedures and devices must be used. DC current can produce a permanent arc so the installation must be grounded and fault- and short-circuit-proof. Only cable connectors, fuses/circuit breakers, and disconnect switches specifically rated for DC current should be used. It is also important to use the DC disconnects for load switching, as disconnecting module cables or working with the DC main cable under load can be hazardous. Furthermore, polarity and energy flow direction must be correct when dealing with circuit-breaking devices to ensure proper functionality and protection.

Maintenance and Troubleshooting

Photovoltaic systems, especially grid-tied, are designed to be a "set it and forget it technology," sitting on your roof quietly producing power and decreasing your electricity bill. However, maintenance procedures should be periodically carried out to maximize system performance and minimize potential hazards and downtimes. See the Appendix for periodic maintenance, upkeep, and troubleshooting suggestions.

TRAINING INSTITUTIONS

Employment in the photovoltaic industry requires different skills and abilities. Similarly, an individual can take numerous avenues receive training necessary to participate within the green sector. Installing photovoltaics is a multidisciplinary. multifaceted task that involves roof sealing, structural engineering, electrical wiring, and data collection and analysis. For this reason, certificate programs, such as those offered by community colleges and NABCEP, focus primarily on the mechanics of installation and design. Next, we look at solar and renewable education as offered via trade unions and organizations, community college degrees and certification programs, universities, and workforce development organizations such as Solar Richmond. (See the Appendix for examples of programs discussed here.)

TRADE UNIONS

The National Electrical Contractors Association (NECA) in collaboration with the International Brotherhood of Electrical Workers (IBEW) and its National Joint Apprenticeship & Training Committee (NJATC) offer solar training and workshops in addition to and within its traditional training programs.

The NJATC offers a few different courses related to PV systems.

Via this training, union electricians learn to deal with any electrical system, including photovoltaics, and the highest quality and workmanship levels. The core training of a union electrician can take over four years and includes much information not directly related to PV or green construction.

COMMUNITY COLLEGES

Numerous certificate and degree programs in community colleges focus on renewable energy and PV installation. For example, Owens Community College in Toledo, Ohio, offers a 40-hour PV training course open to anyone interested in PV installation. The program includes: system sizing and construction, codes and standards, siting and design, battery safety, interconnection safety, troubleshooting, and maintenance. It concludes with discussion about the requirements for taking the entry level NABCEP certification exam. AOS and

INSTALLING GRID-CONNECTED PHOTOVOLTAIC SYSTEMS

Cost: \$495

Duration: 3.5 day(s)

Description: Goal is to develop "system knowledgeable" professionals who can ensure the safety and quality of PV system installations. Course format includes both classroom instruction and a high level of participant-interactive exercises. Exercises involve complete stepby-step process of designing, installing, and commissioning grid-connected PV systems, and develop working knowledge of PV systems and equipment.

PHOTOVOLTAIC SYSTEMS

Cost: \$550

Duration: 4 day(s)

Description: Course provides overview of photovoltaic systems; open to contractors, journeymen, instructors and apprentices. Topics include an overview of PV systems and applications, solar resource and site assessments, system design and installation, and operations and maintenance.

SOLAR PHOTOVOLTAIC SYSTEMS FOR CONTRACTORS

Cost: \$250

Duration: 2 day(s)

Description: 16-hour course targeted to electrical contractors and journeymen and focused on business opportunities in solar photovoltaic (PV) system installations. Topics include overview of PV systems and equipment; markets and applications; customer development and site surveys; requirements for contracting and installing PV systems; taking advantage of financial incentives and achieving industry certifications; and other resources. AAS degree programs are offered by community colleges. These include the Photovoltaic Installation Certificate program at Hudson Valley Community College; the Energy Management Technician program with a Renewable Energy Technician option at Lane Community College; and the Renewable Energy Technology program with either a solar thermal or photovoltaic specialty at Red Rocks Community College. All of these programs involve at least some level of renewable energy theory and construction skills.

HIGHER EDUCATION INSTITUTIONS

Universities across the nation are consistently adding renewable energy classes and programs to their catalogues. Some universities offer continuing education (CE) credit courses while others are now offering full degrees either related to or specifically about renewable energy. For example, the University of Central Florida and its Florida Solar Energy Center (FSEC) offers a 40-hour continuing education course entitled "Installing Photovoltaic Systems". This course is open to contractors, electricians, utility supervisors, and engineers interested in PV installation. It is has a classroom section as well as a hands-on lab component and covers the basics of PV installation for both grid-tied and independent systems. Attendees receive a certificate of completion from the FSEC at the end of the week.

North Carolina State University also offers a five-day continuing education credit course for architects, builders, electricians, businesspersons, engineers and students, entitled "Renewable Energy Technologies (IV)". Upon completion attendees are prepped for the optional NABCEP entry-level PV installer's exam and students receive credit towards their degree program. Other universities have also started renewable Bachelor of Science degree programs, such as those available at The Pennsylvania State University (Energy Engineering) and the Oregon Institute of Technology (Renewable Energy Engineering). These are intended to be four-year degree programs that include a core education based upon the natural sciences and engineering principles.

WORKFORCE DEVELOPMENT ORGANIZATIONS

Several organizations now focus specifically on providing pathways out of poverty through green construction and photovoltaics. Solar Richmond¹⁸, in Richmond California, is a green-collar job training organization that provides a two-week solar installation-training program in collaboration with its partners, RichmondBUILD and GRID Alternatives. Training begins with individuals receiving basic construction training through RichmondBUILD and ends with the two-week PV-specific training.

^{18. &}quot;What We Do." *Solar Richmond*. Accessed September 2, 2008 <http://www.solarrichmond.org/id47. html>

While workforce development organizations may not have the furthest reach or greatest number of participants, their impact is immediately felt for at least two reasons. First, their target audience is generally underprivileged individuals who greatly benefit from the training and work experience. So far, Solar Richmond has placed sixteen individuals into the workforce and installed over fifty kilowatts of photovoltaics on low-income properties. Second, they provide low-cost solar installations with free labor for qualified low-income homeowners. This allows more money to remain within the community while helping its members by decreasing their utility bills.

WORKFORCE SAFETY

Photovoltaic systems differ from traditional residential electrical systems primarily by operating with direct current (dc) as opposed to alternating current (ac). This may make the system unfamiliar to some contractors and especially to the average homeowner/do-it-yourselfer. The systems are energized immediately upon exposure to light and may have numerous energy sources. A brief elaboration of considerations for safe and effective PV systems may be found in the Appendix.

Typical electrical systems are installed by electricians who are extensively trained in the practical application of safe electrical practices required by local and national codes. Non-contractor PV engineers often do not possess detailed knowledge of these practices. Thus, either a team of specialized individuals designs and installs the system or one highly trained individual oversees the entire project. This training is generally only available to those individuals with practical electrical experience as well as additional PV system education.

LICENSING, ACCREDITATION AND CERTIFICATION

According to the National Electrical Contractors Association, due to the high voltage present in PV systems, they should only be installed and serviced by fully trained and licensed electricians. Roofers will argue that due to the penetrations often necessary to properly secure an array, only someone trained in maintaining a weatherproof barrier should mount the system. Furthermore, due to the inefficient operation of an improperly installed system, rebate programs such as those in California require that the system be installed and certified according to certain guidelines. Some rebate programs, such as the Power Saver Program¹⁹ offered by Austin Energy in Austin, Texas, could require that the system be installed by a NABCEP certified installer. California's Solar Initiative program also recommends that NABCEP installers install the PV systems.

Registered Installer Requirements. *Energy Efficiency*. Austin Energy. Accessed September 2, 2008 http://www.austinenergy.com/energy%20efficiency/programs/rebates/solar%20rebates/ installerresources.htm>

The Interstate Renewable Energy Council (IREC) provides Institute for Sustainable Power Quality²⁰ (ISPQ) accreditation as a third party for renewable energy courses. This standard was developed by the Institute for Sustainable Power (ISP). Some of the key points of its accreditation program may be found in the Appendix. The task analysis used by IREC is the PV Task Analysis²¹ designed by NABCEP (see Appendix for the complete Task Analysis). The analysis outlines the skills and abilities that an individual must possess in order to safely and completely install and maintain a PV system. These tasks are targeted to the system installer rather than the designer, however. Therefore, further education beyond all tasks covered in this analysis is necessary to be a full PV integrator. A listing of accredited programs is available on the IREC website.²²

Certification and accreditation are voluntary at this time since a PV installer license is not required by national law. This does not mean that program accreditation or individual certification is not valuable or useful. Electrical licenses are only recognized at the state level. While a nationally recognized PV license is unlikely in the immediate future, third-party accreditation is a valuable tool for determining the quality of education offered by a specific program or institution.

Solar Richmond (Richmond, CA): A Case Study

Solar Richmond, in Richmond, California, has been created to provide community members with pathways out of poverty. In partnership with RichmondBUILD, the Solar Living Institute, and Grid Alternatives, this program educates students in general construction practices as well as PV installation. Its goals include creating 100 new green-collar jobs, installing 50 solar systems for low-income homeowners and a total installed capacity of 5 MW by 2010.

The program has five basic thrusts.

1. Solar Installation Training

• A two-week long, PV-specific training program is offered in addition to construction training received from RichmondBUILD.

2. Low-Income Solar

• Grid Alternatives helps to facilitate the provision of low-cost PV installations for qualified low-income homeowners.

SOLAR RICHMOND:

Successfully Creating Employment and Business Opportunities in Renewable Energy

Solar Richmond, in partnership with RichmondBUILD, the Solar Living Institute, and Grid Alternatives, educates students in general construction practices as well as PV installation. Its goals include creating 100 new green-collar jobs, installing 50 solar systems for low-income homeowners and a total installed capacity of 5 MW by 2010.

The program has five main thrusts:

- Solar Installation Training
- Low-Income Solar
- Advocacy and Policy
- Solar Promotion
- Internship Program

For more information: http:// www.solarrichmond.org/id47. html

^{20.} ISPQ Training Accreditation. *IREC Programs*. Interstate Renewable Energy Council. Accessed September 11, 2008 <http://www.irecusa.org/index.php?id=25>

^{21.} PV Task Analysis. North American Board of Certified Energy Practitioners. Accessed September 11, 2008 http://www.nabcep.org/pvtaskanalysis.cfm>.

^{22.} This page contains a listing and further links to the ISPQ-accredited programs and individuals: http://www.irecusa.org/index.php?id=91

- The system is installed at no cost to the homeowners through free labor provided by Solar Richmond members.
- In addition to the low-cost system, homeowners receive deferred lowinterest loans through the City of Richmond Redevelopment Agency, which require payment only upon the sale of the home.
- The PV system also creates substantial savings on the homeowner's electric bill due to the effectiveness of PV in California.

3. Advocacy and Policy

- Work with the city officials to help create policy that brings the advantages of the green economy to Richmond.
- Secure no-permit costs for all Richmond residents.
- Secure favorable loans specifically for low-income homeowners.
- Work to get the City Council to pass a resolution to install 200kW of PV on City Hall.

4. Solar Promotion

- Participate in Richmond's annual Earth Day
- Provide Richmond Solar Homes Tours, which are part of the annual ASES national tour.

5. Internship Program

- Provide immediate, paid opportunities for graduates to receive further onthe-job training
- Ten-week paid internships are available with local solar companies and bridge training to permanent employment.

As of August 2008, sixteen graduates had been placed into the workforce. Some were very successful, while others stayed briefly and then moved on. In order to continue finding jobs for graduates, an internship program was created. The paid internship program gives solar companies the opportunity to work with the graduates in the field. This allows the less articulate population coming from the program to compete with college and university graduates for the same positions. The interns' pay comes from donations made to the Solar Richmond program. In addition to providing the 10-week internship, Solar Richmond assigns a case manager to help individuals stay focused and on track. The case manager also helps graduates prepare resumes and compete in the growing green-collar job market.

It should be noted that the Solar Richmond program is not completely financially self-sufficient. The systems being installed at residential locations are almost zero cost due to funding, donations, and partnerships. The homeowners are unable to afford the systems and the labor is free as part of the training. This means that the installers from the program are not paid for their work (unless they are involved in the paid internship program) and herefore are not receiving income. It is not until a graduate finishes the program and is hired by a PV integrator that the program comes full circle and provides a sustainable living wage for the participants. Further, this particular program does not completely train individuals for PV work—it is simply a start. The 2-week PV training is far from being as detailed and technically advanced as a longer-term degree or trade school program. However, program graduates receive significant practical application skills through on-the-job training.

Summing Up

This examination of the photovoltaic industry and corresponding educational institutions uncovered a few key findings. The industry is evolving so rapidly that it very difficult to determine current best practices as newly honed programs are developed almost daily. However, certain elements have proven successful.

Importance of System Location and Type. The location and type of the PV system is important, but not for the obvious reasons. While the power of the incident sun on a given location does change, it does not determine whether PV will work in that location. The most important factors are electricity cost and types of incentives available. In areas such as California, for example, where electric rates can be over twenty cents per kilowatt-hour, PV is far more feasible than in locations that utilize inexpensive coal generation (environmental costs aside). A grid-tied system will most likely be the most effective way to implement PV with current technology because the grid can function as an always available, super-efficient battery with no installation cost, no maintenance, and no degradation from cycling. A grid-tied system is only effective as a money-saving versus environment-saving device when net-metering is available. Also, time-of-use metering can further increase system-related benefits.

Incentives. When identifying and assessing incentives, it is apparent that local incentives are currently the most effective in decreasing the cost of installing a PV system. However, these high-paying incentives only exist in limited locations across the nation. To maximize their utility, production-based incentives such as feed-in tariffs should be used to reward the system for its positive environmental impact over its useful lifetime.

Workforce Training. When examining potential training programs and institutions for the PV workforce, different strengths and weaknesses emerge. For individuals tasked with installing a system, practical experience is critical—this is where community colleges, technical schools, and programs such as Solar Richmond shine. However, these programs do not always go into as much depth and are not as technical as those to which university degrees are attached—and such training can be necessary for system design and engineering. Further, programs that include energy efficiency and other renewable energy education maximize the marketability of graduates.

The duration of a program can also be a good measure of the level of training and experience to be received by graduates. A weekend or single-week course may be an effective way to introduce PV installation to someone without previous experience but it will certainly not produce a fully competent system integrator. An individual capable of designing and installing a system by themselves will need years of extensive training and an aptitude for such tasks. Use of blended crews, as occurs with Solar Richmond, allows for low-cost system integration while maintaining high-quality installations. An ideal team would include a university-trained system engineer, community college-educated project managers and foremen, trade-union master electricians, and workforce development organization trained laborers.

Finally, programs should target at-risk individuals for training, low-income areas for system implementation, and proper locality to maximize system effectiveness and incentives. In addition, a quality measure of individuals and programs should be done through the development of national certification and accreditation processes, similar to that found in electrical licensing (which is still only at the state level), and university accreditation.

FINDSOLAR.COM SOLAR ESTIMATOR RESULTS FOR THE 8,000 KWH PENNSYLVANIA SYSTEM

Building Type: Residential	I
State & County: PA—Centre	j
Utility: Allegheny	/
Utility Type: Investor-Owned Utility	1
Assumed Average Electric Rate:	۱
Assumed Average Monthly Electricity Usage:	ı
Your Average <i>Monthly</i> Electricity Bill:	ı
Tiered Rates Apply: Yes	5
Time-of-Use Metering Offered:	5
Net-Metering Available:	5
ESTIMATED SYSTEM SIZE The system size best for your situation will vary based upon product, building, geographic and other variables. We encourage you to work with a Solar Pro who can better estimate the system size best for your situation. We estimate your building will need a system sized between 2.86 kW and 4.28 kW of peak power. This estimate assumes the mid-point of this range. Solar Rating:	
4.21 kWh/sq-m/day	
Solar System Capacity Required: 3.57 kW of peak power (DC watts)	
Roof Area Needed:	•
ESTIMATED SYSTEM COST This is only an estimate based upon many assumptions. Installation costs can vary considerably We encourage you to work with a Solar Pro who can provide you with a more detailed cost estimate. We estimate that a 3.57 kW peak power system will cost between \$25,704 and \$38,556. This estimate assumes the mid-point of this cost range.	/.
Assumed Installation cost:	
Expected Allegheny Utility Rebate:)
Expected PA State Rebate:)
PA State Tax Credit/Deduction)
Federal Tax Credit:)
Income Tax on Tax Credit: \$ 0)
YOUR ESTIMATED NET COST: \$ 30,130)
Monthly Payment (6.5% APR, 30 years): \$190)
SAVINGS & BENEFITS Increase in Property Value:	;
Exempt from Property Tax: No)
Accelerated (5 yr) Depreciation:	

First-Year Utility Savings: Since this is not a business application, these savings are in after tax dollars savings may actually be higher!	
Average Monthly Utility Savings:	\$32-\$54
Average Annual Utility Savings:	\$386-\$652
25-year Utility Savings:	\$9,651-\$16,312
Return on Investment (ROI):	72%
Return on Investment (ROI):	85%-97%
Internal Rate of Return (IRR):	0%-0%
Years to Breakeven:	21-40 years
Years to Breakeven:	28-47 years
Greenhouse Gas (CO2) Saved:	
over 25-year system life 1	64,000 auto miles

FINDSOLAR.COM SOLAR ESTIMATOR RESULTS FOR THE 8,000 KWH CALIFORNIA SYSTEM

Building Type: Residential
State & County: CA-Contra Costa
Utility: Southern California Edison Co
Utility Type: Investor-Owned Utility
Assumed Average Electric Rate:
Assumed Average Monthly Electricity Usage:
Your Average <i>Monthly</i> Electricity Bill:
Tiered Rates Apply:
Time-of-Use Metering Offered: Yes—See Notes, below!
Net-Metering Available:

ESTIMATED SYSTEM SIZE

The system size best for your situation will vary based upon product, building, geographic and other variables. We encourage you to work with a Solar Pro who can better estimate the system size best for your situation. We estimate your building will need a system sized between 2.15 kW and 3.23 kW of peak power. This estimate assumes the mid-point of this range.

Solar Rating:	Great
	5.66 kWh/sq-m/day
Solar System Capacity Required:	2.69 kW of peak power (DC watts)
Roof Area Needed:	

ESTIMATED SYSTEM COST

This is only an estimate based upon many assumptions. Installation costs can vary considerably. We encourage you to work with a Solar Pro who can provide you with a more detailed cost estimate. We estimate that a 2.69 kW peak power system will cost between \$19,368 and \$29,052. This estimate assumes the mid-point of this cost range.

Assumed Installation cost:
Expected Southern California Edison Co. Utility Rebate:
Expected CA State Rebate
CA State Tax Credit/Deduction
Federal Tax Credit:
Income Tax on Tax Credit: \$ 0
YOUR ESTIMATED NET COST:
Monthly Payment (6.5% APR, 30 years): \$110
SAVINGS & BENEFITS Increase in Property Value:
Exempt from Property Tax:

Accelerated (5 yr.) Depreciation:
First-year Utility Savings:
Average Monthly Utility Savings:
Average Annual Utility Savings:
25-year Utility Savings: \$25,303-\$49,895
Return on Investment (ROI): 359% (with Solar System avg. cost set as asset value)
Return on Investment (ROI):
Internal Rate of Return (IRR):
Years to Breakeven:
Years to Breakeven:
Greenhouse Gas (CO2) Saved:82.0 tonsover 25-year system life164,000 auto mi

STATE AND UTILITY NET-METERING RULES, REGULATIONS AND PROGRAMS (UPDATED DECEMBER 2007) THE INTERSTATE RENEWABLE ENERGY COUNCIL (IREC) "CONNECTING TO THE GRID" PROJECT:

Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	Interconnect ion Standards for Net Metering	Utilities Involved
Arizona - Arizona Public Service	100 kW / All customers	Solar, Wind, Biomass	15 MW	Credited at retail rate to customer's next bill; granted to utility at end of calendar year	(Utility guidelines)	Arizona Public Service
Arizona - Salt River Project	10 kW / Residential	Photovoltaics	None	Purchased monthly by utility at average monthly market price minus a price adjustment of \$0.00017/kWh	(Utility guidelines)	Salt River Project
Arizona - Tucson Electric Power	10 kW / Commercial, Residential	Photovoltaics, Wind	500 kW peak aggregate	Credited to customer's next bill; granted to utility after January billing cycle	(Utility guidelines)	Tucson Electric Power
Arkansas	25 kW for residential systems; 300 kW for non-residential systems	Solar, Wind, Biomass, Hydro, Geothermal, Fuel Cells, Microturbines	None	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	All utilities
California	1 MW (three biogas digesters up to 10 MW per unit may net meter) / Commercial, Industrial, Residential	Photovoltaics, Landfill Gas, Wind, Anaerobic Digestion, Fuel Cells	2.5% of utility's peak demand	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	All utilities ²³

23. In California, all utilities with the exception of Los Angeles Department of Water & Power (LADWP)-must offer net metering to customers with PV and wind-energy systems. (LADWP offers net metering voluntarily.) In addition, investor-owned utilities must offer net metering to customers with fuel cells and biomass-energy systems.

Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	Interconnect ion Standards for Net Metering	Ufilities Involved
Colorado	2 MW / Commercial, Industrial, Residential	Solar, Landfill Gas, Wind, Biomass, Anaerobic Digestion, Small Hydro, Fuel Cells (Renewable Fuels)	None	Credited at retail rate to customer's next bill; at end of each calendar year, customer reimbursed for NEG at utility's average hourly incremental cost for the prior 12-month period	Yes	Colorado utilities serving 40,000 or more customers
Colorado - Delta-Montrose Electric Association	May not exceed customer's measured demand / Commercial, Residential	Photovoltaics, Wind, Biomass, Hydro	1 MW	Granted to utility monthly	Yes	Delta- Montrose Electric Association
Colorado - Empire Electric Association	10 kW / Commercial, Residential, Nonprofit, Schools, Agricultural, Institutional	Photovoltaics, Wind	50 customers	Utility pays customer at a rate equal to the average cost of power from the utility's wholesale supplier for that year, excluding wholesale power sold to loads billed under the utility's SCS tariffs	Yes	Empire Electric Association
Colorado - Fort Collins Utilities	10 kW / Residential	Photovoltaics, Wind	25 customers	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	Fort Collins Utilities
Colorado - Gunnison County Electric	10 kW / Commercial, Residential	Photovoltaics, Wind	50 customers	Purchased by utility at wholesale rate	Yes	Gunnison County Electric
Colorado - Holy Cross Energy	25 kW / Commercial, Industrial, Residential	Photovoltaics, Wind, Biomass, Hydro, Geothermal	None	Credited to customer's next bill at retail rate; purchased by utility at avoided-cost rate at end of calendar year	Yes	Holy Cross Energy

25 kW / Energy Photovoltaics, Wind, Biomass, Hydro 1% of utilitys Credited at avoided-cost rate to aggregate customer for any unused NEG at beginning of each allendar year demand Yes 2 MW / All customers Solar, Landfill Gas, Wind, Biomass, Fuel Cells, Municipal Solid Waste, Biomass, Fuel Cells, All customers Nome Credited to customer's next bill at retail rate; purchased by utility at avoided-cost rate at end of 12-month participal Solid Waste, Biomass, Fuel Cells, Municipal Solid Waste, Biomass, Fuel Cells, Municipal Solid Waste, Small Hydro, Fuel Cells Nome Credited to customer's next bill at avoided-cost rate at end of 12-month participal utility's avoided-cost rate to ustomers of DR&L 500 Yes 2 MW for non-residential eustomers of DR&L 500 Phydro, Fuel Cells Approximation and the retail rate; purchased by utility at avoided-cost rate to untility's avoided-cost rate to belaware's Green Energy Fund customers of DEC and municipal utilities Yes 10 0kW / Residential Solar, Wind, Biomass, Microurbines None Credited at retail rate to customer's next bill Yes 10 kW / Residential Photovoltaics None Credited at retail rate to customer's next bill Yes 10 kW / Residential Photovoltaics None Credited at retail rate to customer's next bill Yes 10 kW / Residential Photovoltaics None Credited at retail rate to customer's	Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	Interconnect ion Standards for Net Metering	Utilities Involved
2 W/ all customersSolar, Landfill Gas, Wind, Biomass, Fuel Cells, Municipal Hydro, Tidal Biomass, Fuel Cells, Biomass, Fuel Cells, Biomass, Fuel Cells, Biomass, Fuel Cells, Biomass, Fuel Cells, Biomass, Fuel Cells, Board Hydro, Tidal Brengy, Wave Energy, Cocan Thermal 25 kW for non-residential 25 kW for non-residential 25 kW for non-residential 26 kW for non-residential 20 kW for non-residential customers of DPEC and municipal utilitiesNone retail rate; area of 12-month period, agergated area in area in a contract at the definition of the customer's next bill at a pagergated area in a customer's next bill at a pagergated area in a customer's for a customer's next bill a voided-cost rate at end of 12-month period, attend area in a customer's for non-residential unnicipal utilitiesNoneCredited to customer's next bill a voided-cost rate to a transition and the month period, area in a customer's for non-residential a ununicipal utilitiesYes100 kW /Solar, Wind, Biomass, unting a worked-cost rate to customer's municipal utilitiesNoneCredited at retail rate to customer's next billYes100 kW /Biomass, municipal utilitiesNoneCredited at retail rate to customer's next billYes100 kW /Biomass, municipal utilitiesNoneCredited at retail rate to customer's next billYes100 kW /Biomass, municipal utilitiesNoneCredited at retail rate to customer's next billYes100 kW /BiotovoltaicsNoneCredited at retail rate to customer's mext billYes100 kW /Biotovoltaics, WindNoneCredited at retail rate to cu	Colorado - La Plata Electric Association		Photovoltaics, Wind, Biomass, Hydro	1% of utility's aggregate customer peak demand	Credited at avoided-cost rate to customer's next bill; utility pays customer for any unused NEG at beginning of each calendar year	Yes	La Plata Electric Association
25 kW for residential systems;Solar, Wind, Biomass, Hydro, Fuel Cells1% of utility's aggregated customer customers of DP&L 500 aggregated tw for non-residential customers of DPEC and municipal utilitiesSolar, Wind, Biomass, aggregated any remaining NEG is granted at the revision)Yes terail rate; at end of 12-month period, (under customers of DPEC and municipal utilitiesSolar, Wind, Biomass, aggregated revision1% of utility's avoided-cost rate to Delaware's Green Energy Fund Delaware's Green Energy Fund municipal utilitiesYesNoneIO0 kW / Residential MicroturbinesSolar, Wind, Biomass, noneNoneCredited at retail rate to customer's next bill rest of next bill rest of next billYesNoneIO0 kW / ResidentialResidential MicroturbinesNoneCredited at retail rate to customer's next bill rate at end of 12-month periodYesNoneIO kW / ResidentialPhotovoltaicsNoneCredited at retail rate to customer's next bill rate at end of 12-month periodYesNoneIO kW / ResidentialPhotovoltaics, WindNoneCredited at retail rate to customer's next bill rate at end of 12-month periodYesNoneIO kW / 	Connecticut	2 MW / 	Solar, Landfill Gas, Wind, 	None	Credited to customer's next bill at 	Yes	Investor- owned utilities
100 kW / Solar, Wind, Biomass, None Credited at retail rate to customer's next bill Yes Commercial, Industrial, Hydro, Geothermal, Tidal, None Credited at retail rate to customer's next bill Yes Residential Microturbines None Credited at retail rate to customer's next bill Yes 10 kW / Photovoltaics None Credited at retail rate to customer's next bill; purchased by utility at retail Yes 10 kW / Photovoltaics None Credited at retail rate to customer's next bill; purchased by utility at retail Yes 10 kW / Photovoltaics None Credited at retail rate to customer's next bill; purchased by utility at retail Yes 10 kW / Photovoltaics, Wind None Credited at retail rate to customer's netail Yes	Delaware	 25 kW for residential systems; 2 MW for non-residential customers of DP&L 500 kW for non-residential customers of DEC and municipal utilities 	Solar, Wind, Biomass, Hydro, Fuel Cells		Credited to customer's next bill at retail rate; at end of 12-month period, any remaining NEG is granted at the utility's avoided-cost rate to Delaware's Green Energy Fund	Y es (under revision)	All utilities (applies to cooperatives only if they choose to compete outside their limits)
10 kW / Photovoltaics None Credited at retail rate to customer's Yes Residential next bill; purchased by utility at retail rate Yes 10 kW / Photovoltaics, Wind None Credited at retail rate to customer's retail Residential 10 kW / Photovoltaics, Wind None Credited at retail rate to customer's guidelines)	District of Columbia	100 kW / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Geothermal, Tidal, Fuel Cells, CHP, Microturbines	None	Credited at retail rate to customer's next bill	Yes	All utilities
10 kW / Photovoltaics, Wind None Credited at retail rate to customer's (Utility Residential next bill next bill guidelines)	Florida - Florida Keys Electric Cooperative	10 kW / Residential	Photovoltaics		Credited at retail rate to customer's next bill; purchased by utility at retail rate at end of 12-month period	Yes	Florida Keys Electric Cooperative
	Florida - JEA	10 kW / Residential	Photovoltaics, Wind	None	Credited at retail rate to customer's next bill	(Utility guidelines)	JEA

t Utilities Involved	Electric	New Smyrna Beach Utilities	Tallahassee Electric Utility	All utilities	All utilities	Idaho Power	Rocky Mountain Power
Interconnect ion Standards for Net Metering	(Utility guidelines)	(Utility guidelines)	(Utility guidelines)	Yes	Yes	(Utility guidelines)	(Utility guidelines)
Treatment of Net Excess Generation (NEG)	Credited at retail rate to customer's next bill; indefinite carryover	Credited at retail rate to customer's next bill	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Credited to customer's next bill at utility's retail rate for residential and small commercial customers; credited at 85% of utility's avoided-cost rate for large commercial and agricultural customers	Credited to customer's next bill at utility's retail rate for residential and small commercial customers; credited at 85% of utility's avoided-cost rate for all other customers
Limit on Total Capacity	None	None	None	0.2% of a utility's annual peak demand	0.5% of a utility's annual peak demand	0.1% of utility's 2000 peak demand (in Idaho)	0.1% of utility's 2002 peak demand (in Idaho)
Eligible Technologies	Photovoltaics	Photovoltaics	Photovoltaics	Photovoltaics, Wind, Fuel Cells	Photovoltaics, Wind, Biomass, Hydro	Solar, Wind, Biomass, Hydro, Fuel Cells	Solar, Wind, Biomass, Hydro, Fuel Cells
System Size Limit / Customer Classes Eligible	500 kW for commercial systems; 10 kW for residential systems	10 kW / Commercial, Industrial, Residential	10 kW / Commercial, Residential	100 kW for commercial systems; 10 kW for residential systems	50 kW / Commercial, Residential, Government	100 kW for large commercial and agricultural; 25 kW for residential and small commercial	100 kW for large commercial and agricultural; 25 kW for residential and small commercial
Program	Florida - Lakeland Electric	Florida - New Smyrna Beach Utilities	Florida - Tallahassee Electric Utility	Georgia	Hawaii	Idaho - Idaho Power	Idaho - Rocky Mountain Power

Utilities Involved	Avista Utilities	All utilities, except munis and coops	Investor- owned utilities	Investor- owned utilities	Investor- owned utilities, cooperatives	All utilities
Interconnect ion Standards for Net Metering	(Utility guidelines)	(Utility guidelines)	Yes	No	No	Yes
Treatment of Net Excess Generation (NEG)	Credited to customer's next bill at utility's retail rate; granted to utility at beginning of calendar year with no compensation to customer	0.1% of utility's annual peak demand40 kW or less, 1:1 ratio a trovider's avoided cost of supply, or as negotiated within a power-purchase agreement.Excess credits expire after 1 year.	Credited at retail rate to customer's next bill	Credited at retail rate to customer's next bill	Credited at retail rate to customer's next bill; indefinite carryover	Credited at retail rate to customer's next bill; indefinite carryover
Limit on Total Capacity	0.1% of utility's 1996 peak demand (in Idaho)	0.1% of utility's annual peak demand	0.1% of a utility's most recent peak summer load	None	0.1% of a utility's single- hour peak load during the previous year	None
Eligible Technologies	Solar, Wind, Biomass, Hydro, Fuel Cells	Solar, wind, crops, anaerobic digestion of livestock or food processing waste, fuel cells, microturbines that use renewable fuels, hydro	Photovoltaics, Wind, Small Hydro	Photovoltaics, Wind, Biomass, Hydro, Municipal Solid Waste	Photovoltaics	Photovoltaics, Wind, Biomass, Hydro, Geothermal, Fuel Cells (Renewable Fuels), Microturbines (Renewable Fuels)
System Size Limit / Customer Classes Eligible	25 kW / Commercial, Residential, Agricultural	2 MW All customers	10 kW / Residential, Schools	500 kW / Commercial, Industrial, Residential	15 kW / All customers	100 kW for commercial and agricultural systems; 25 kW for residential systems
Program	Idaho - Avista Utilities	Illinois - Specific rules developing in Docket 07-0483, opened 9/18/07	Indiana	Iowa	Kentucky	Louisiana

					Interconnect	
Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	ion ion Standards for Net Metering	Utilities Involved
Louisiana - City of New Orleans	100 kW for commercial systems; 25 kW for residential systems	Photovoltaics, Wind, Biomass, Hydro, Geothermal, Fuel Cells (Renewable Fuels), Microturbines (Renewable Fuels)	None	Credited at retail rate to customer's next bill; indefinite carryover	Yes	Entergy New Orleans (and any other jurisdictional utilities)
Maine	100 kW / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Geothermal, Fuel Cells, Municipal Solid Waste, CHP, Tidal Energy	None	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	No	All utilities
Maryland	2 MW / Commercial, Residential, Schools, Government	Photovoltaics, Wind, Biomass	1,500 MW	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	All utilities
Massachusetts	60 kW / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, CHP, Fuel Cells, Municipal Solid Waste	None	Credited at average monthly market rate to customer's next bill	Yes	Investor- owned utilities
Michigan	30 kW / Commercial, Industrial, Residential, Nonprofit, Schools, Government, Agricultural, Institutional	Solar, Wind, Biomass, Hydro, Geothermal, Municipal Solid Waste	0.1% of a utility's peak load or 100 kW (whichever is greater)	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	Various utilities (voluntary participation)
Minnesota	40 kW / Commercial, Industrial, Residential	Photovoltaics, Wind, Biomass, Hydro, Municipal Solid Waste, CHP	None	Customer receives a check for NEG at the end of each month, calculated at the "average retail utility energy rate"	Yes	All utilities

Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	Interconnect ion Standards for Net Metering	Utilities Involved
Missouri	100 kW / All customers	Solar, Wind, Hydro	5% of a utility's single-hour peak load during the previous year	Credited at avoided-cost rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	All utilities
Montana	50 kW / Commercial, Industrial, Residential	Photovoltaics, Wind, Hydro	None	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	In vestor- owned utilities
Montana - Montana Electric Cooperatives	10 kW / Commercial, Residential	Photovoltaics, Wind, Geothermal, Fuel Cells, Small Hydro	None	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	Most of MEC's 26 members
Nevada	1 MW ²⁴ / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Geothermal	1% of a utility's peak capacity	Credited at retail rate to customer's next bill; indefinite carryover	Yes	Investor- owned utilities
New Hampshire	100 kW / Commercial, Industrial, Residential	All renewables	1% of a utility's annual peak demand	Credited at retail rate to customer's next bill; indefinite carryover	Yes	All utilities
New Jersey	2 MW / Commercial, Residential	Solar, Wind, Biomass, Hydro, Geothermal, Fuel Cells (Renewable Fuels), Tidal Energy, Wave Energy	None	Credited at retail rate to customer's next bill; purchased by utility at avoided-cost rate at end of 12-month billing cycle	Yes	Investor - owned utilities

24. In Nevada, utilities are permitted to charge certain fees on systems greater than 100 kW.

					Interconnect	
Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	ion Standards for Net Metering	Utilities Involved
New Mexico	80 MW / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Geothermal, Fuel Cells, Municipal Solid Waste, CHP, Microturbines	None	Credited to customer's next bill at utility's avoided-cost rate or purchased by utility at avoided-cost rate monthly	Yes (under development)	Investor- owned utilities, cooperatives
New York	10 kW for residential or farm-based solar; 400 kW for farm waste; 125 kW for farm-based wind; 25 kW for residential wind	Photovoltaics, Biomass, Wind	Solar: 0.1% of a utility's demand in 1996, ³⁵ farm biogas: 0.4% of a utility's demand in 1996; wind: 0.2% of a utility's 2003 demand	Credited to customer's next bill at retail rate, except NEG from wind systems over 10 kW, which is credited to customer's next bill at the utility's avoided-cost rate. NEG purchased by utility at avoided-cost rate at end of 12-month billing cycle.	Yes	All utilities
North Carolina	100 kW for non-residential systems; 20 kW for residential systems	Photovoltaics, Wind, Biomass, Hydro	0.2% of a utility's North Carolina retail peak load for the previous year	Credited to customer's next bill at retail rate; granted to utility annually at beginning of each summer season ²⁶	Yes	Investor- owned utilities

25. In December 2006, the New York Public Service Commission approved a request by Central Hudson Gas & Electric Corporation to raise the limit on aggregate net-metering capacity for PV systems in the utility's service territory. The PSC's decision increased Central Hudson's aggregate net-metering limit by 50% -- from 800 kW to 1,200 kW.

26. In North Carolina, customers are required to switch to a time-of-use tariff in order to net meter. This arrangement includes the separate carryover of on-peak NEG and off-peak NEG.

Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Canacity	Treatment of Net Excess Generation (NEG)	Interconnect ion Standards	Utilities Involved
	D				for Net Metering	
North Dakota	100 kW / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Geothermal, Municipal Solid Waste, CHP	None	Purchased by utility at avoided-cost rate	No	In vestor- owned utilities
Ohio	No limit specified (must be sized to match some or all of customer's load) / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Fuel Cells, Microturbines	1% of a utility's peak demand	Credited at utility's unbundled generation rate to customer's next bill; customer may request refund of NEG credits accumulated over a 12-month period	Yes	All competitive utilities
Ohio - Yellow Springs Utilities	25 kW / Commercial, Residential	Photovoltaics, Wind	None	Not addressed	(Utility guidelines)	Yellow Springs Utilities
Oklahoma	100 kW or 25,000 kWh/year (whichever is less) / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro, Geothermal, Municipal Solid Waste, CHP	None	Granted to utility monthly or credited to customer's next bill at utility's avoided-cost rate (varies by utility)	No	Investor- owned utilities, cooperatives regulated by OCC
Oregon	2 MW for nonresidential systems; 25 kW for residential systems	Solar, Wind, Biomass, Hydro, Fuel Cells	None	Credited to customer's next bill at retail rate; credited to Oregon low- income assistance programs at end of each March billing cycle	Yes	Investor- owned utilities (PGE and PacifiCorp only)
Oregon - Ashland Electric	None / Commercial, Residential	Photovoltaics, Wind	None	Purchased by utility monthly at retail rate (1,000 kWh/month maximum)	(Utility guidelines)	Ashland Electric

System Size Limit /	•	Limit on Total	Treatment of Net Excess	Interconnect ion	Utilities
ible	Eligible Technologies		Generation (NEG)	Standards for Net Metering	Involved
5 MW for systemsSolar, Wconnected to microgrids orHydroavailable for emergencies; 3Municip;MW for nonresidentialCHP,systems;O50 kW for residentialOsystemssystems	Solar, Wind, Biomass, Hydro, Fuel Cells, Municipal Solid Waste, CHP, Waste Coal, Other DG	None	Credited to customer's next bill at retail rate; PUC to address treatment of NEG remaining at end of 12-month period	Yes	Investor- owned utilities
1.65 MW for systemsSolar, Wowned by cities, towns orHydro, Gthe Narragansett BayCells, MCommission; 1 MW for allWaother customersother customers	Solar, Wind, Biomass, Hydro, Geothermal, Fuel Cells, Municipal Solid Waste, CHP	s, 5 MW (1 MW tele reserved for systems under 25 kW)	Credited at the utility's avoided cost rate on the customer's next bill. Reverts to utility at the end of a 12- month period.	(Utility guidelines)	Narragansett Electric
Residential only Solar, W Mi	Solar, Wind, Biomass, Micro-hydro	20 kW	Generators paid between 3.2 and 5.7 cents per kWh, depending on whether power is received during non-peak or peak demand periods. This is somewhat less than Santee's residential rate of 7 cents/kWh	(Utility guidelines)	Santee Cooper
All customers.	All	None	TVA buys renewable generation from its distributors for its Green Power Switch program. The rate is a flat 10 cents/kWh. Dual metering must be used.	Yes	All TVA distributors
50 kW / Solar, W Commercial, Industrial, Hydro, Gé Residential Cells, Tida Energy,	Solar, Wind, Biomass, Hydro, Geothermal, Fuel Cells, Tidal Energy, Wave Energy, Microturbines	s, None tel ave	Purchased by utility monthly at avoided-cost rate	Yes	Integrated IOUs that have not unbundled

t Utilities Involved	Austin Energy	Investor- owned utilities, cooperatives	City of St. George	Murray City Power	All utilities	Investor- owned utilities, cooperatives
Interconnect ion Standards for Net	(Utility guidelines)	Yes	(Utility guidelines)	(Utility guidelines)	Yes	Yes
Treatment of Net Excess Generation (NEG)	Credited to customer's next bill	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Credited to customer's next bill at utility's avoided-cost rate; indefinite carryover	Credited to customer's next bill at utility's retail rate; granted to utility each April	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle
Limit on Total Capacity	1% of utility's load	0.1% of a utility's 2001 peak demand	None stated	None stated	1% of a utility's 1996 peak demand or peak demand during most recent calendar year (whichever is greater)	1.0% of a utility's annual peak demand
Eligible Technologies	Solar, Wind, Biomass, Hydro, Geothermal, Municipal Solid Waste	Solar, Wind, Hydro, Fuel Cells	Photovoltaics, Wind	Photovoltaics, Wind, Hydro	All renewables	Solar, Wind, Biomass, Hydro, Geothermal, Tidal, Wave, Municipal Solid Waste
System Size Limit / Customer Classes Eligible	20 kW / Commercial, Residential	25 kW / Commercial, Industrial, Residential	10 kW / All customers	10 kW / All customers	150 kW for farm systems; 15 kW for commercial and residential / Commercial, Residential, Agricultural	500 kW for non-residential; 10 kW for residential
Program	Texas - Austin Energy	Utah	Utah - City of St. George	Utah - Murray City Power	Vermont	Virginia

Virgin Islands 10 kW / (U.S.) Commercial, Residential	N / N	Lugiore recumologies	Limit on 1 otal Capacity	Treatment of Net Excess Generation (NEG)	Standards for Net Metering	Utilities Involved
	Residential	Photovoltaics, Wind	5 MW on St. Croix; 10 MW on St. Thomas, St. John, Water Island and other territorial islands	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	U.S. Virgin Islands Water and Power Authority (WAPA)
Washington 100 kW / Commercial, Indust Residential	W / Industrial, ntial	Solar, Wind, Hydro, Biogas, Fuel Cells, CHP	0.25% of a utility's 1996 peak load	Credited at retail rate to customer's next bill; granted to utility at end of 12-month billing cycle	Yes	All utilities
Washington - 100 kW / Grays Harbor Commercial, Industi PUD Residential	W / Industrial, ntial	Solar, Wind, Hydro, Biogas, Fuel Cells, CHP	0.25% of utility's 1996 peak load	Credited at retail rate to customer's next bill; purchased by utility at 50% retail rate at end of 12-month billing cycle	Yes	Grays Harbor PUD
West Virginia 25 kW / Commercial, Residential		Photovoltaics, Landfill Gas, Wind, Biomass, Fuel Cells, Hydro	0.1% of a utility's total load participation	Credited to customer's next bill at utility's retail rate	Yes (utility tariffs only)	All utilities
Wisconsin 20 kW ²⁷ / Commercial, Industrial, Residential	²⁷ / Industrial, ntial	Solar, Wind, Biomass, Hydro, Geothermal, Municipal Solid Waste, CHP	None	Varies by utility. Generally credited at retail rate for renewables; generally credited at avoided cost for non- renewables.	Yes	Investor- owned utilities, municipal utilities

27. In January 2006, the Wisconsin Public Service Commission approved a proposal by We Energies to offer net metering to customers with wind turbines greater than 20 kW but no greater than 100 kW in capacity. This offer is available to the first 25 eligible applicants.

Program	System Size Limit / Customer Classes Eligible	Eligible Technologies	Limit on Total Capacity	Treatment of Net Excess Generation (NEG)	Interconnect ion Standards for Net Metering	Utilities Involved
Wyoming	25 kW / Commercial, Industrial, Residential	Solar, Wind, Biomass, Hydro	None	Credited at retail rate to customer's next bill; purchased by utility at avoided-cost rate at end of 12-month billing cycle	Yes	All utilities

SAMPLE OF TRAINING INSTITUTIONS

		Received Marcol	Streetler.	A	60mm	Format
Туре	Location	Program Name	Duration	Audience	Size	Porma
Conversity Continuing Education	Fonds Solar Energy Canter at The University of Cantos Flores	Installing Photosotteic Systems		contractors electricions utilities		Classroom: Lab
Community College	Hudson Volley (C School of Engineering	Photoentas: Toctalization Cortificatio		engineers portroenen Student		Classroom Lab
Community College	and Interstee Technologies	Physicsellary Theorem	40tus			
Community College	Services Lane CC	English Management		Anvone Interested in PV Installation		Classroom Hends on
Community College	RedBorks CC	Technicise Renewable Energy Technical Sabara Renewable Energy	51 meta me			Laby Hends on: Co-op Classroom
		Technology under Construction Technology				bitemono
NABCER		Entry Level Certificat of		Anvene		
ender of the second		Knowledge of PV Systems		nterestad in PV Installation		
Conege Workshop	Samingdale State College	Residential DV Society Distribution and Maintenance Montahop		High school degree, Licenson Bechnicens Bechnicel		Classinom Lab
				Contractors, Engilieering Degree		
Deversity Continuing Education	North Carolina State	Renewable Energy Technologies (TV) is Day Renewable Electric		Architect, Brother Electricizer,		Classroom
		Generation with PV Systems		Bosmessperson Engineer or Stodent		
960	Solar Every International	Po Design & Detailation		Anyone Interested in Pa Installation		Classroom; Lab
University	The Pennsylvania State University	Energy Engineering		Undersi aduate Students		Classroom Lab
University	Seeps Jistilius IX Secondage	Nenouatio Energy Engineering	181 credit los	Undergraduate Students		Classification Late

Location			
Florida Solar Energy			
Center at The Universit of Central Florida			
nodson Veiles (C School of Engineering			
and Industrial Technologies			
Overs CC, Accelerae and Community Services			
Lane CC			
RedRocks CC			
Farmingdale State			
College			
North Carolina State			
Solar Evergy International			
The Pennsylvania State			
Dowersty			
Oregon institute of			
Technology			

			à		
Location		3	2		
	2	÷.	ž		
		1 E		4	
		2.3			
Florida Solar Energy				certificate of	
Center at The Univer of Central Honda	×	ХХ	X	considerant tran 5555	
Hudson Velley CC					
School of Engineerin and Engineerin				NARCEP PV	
and Industrial Technologies		x		Cett of Storedge	
Owens CC. Workford				exer Discussion of	
and Community	x	хх	x	NABCEP and	
Services Lane CC				01.802 275	
			X	x	
RedRocks CC				A25	
	X			x	
				NARCEP EXP.	
	X	ХХ	х	cevel Cart	
Farmingdate State				Certificate	
College					
	x	хх	x		
		· · ·	· ·		
North Carolina State				Dolional Credits	
				NAECEP Entry towards their Level begree	
	X			program.	
Solat Everys International	x	хх	x	X MARCHAR	
The Pennsylvania St				and and an and a second s	
Coversity					
Onegan Institute of Technology				85	
			X	×	

		Partne	rships/		
Location	Notes		isors	Links	
Florida Solar Energy Cantar at The Universit	Does not give v NABCEP				
of Central Florida	artification				
Hudson Volley School of Sogmaering and Utiliustria					
and Industrial Technologies					
Overs CC, Norichtes					
and Community Services Lane CC	Get course				
	descriptions				
RedRocks CC	Call for more ourse defail.				
	course detail. Larry Snyder 303-314-6006 Larry snyders?				
	incredu				
		NABCEP			
Farmingdate State					
College					
North Carolina Shahe	Check for previous provides	NABCEP			
	ararkshop Setails				
Solar Energy		ISP / NADCI			
Solar Energy Doternational					
The Pennsylvania State University					
Oregon Institute of					
Technology					

Tables reproduced from Planning and Installing PhotovoltaicSystems: A Guide for Installers, Architects and Engineers.

Period	Inverter	Operating without and fault display?
Monthly	Yield Check	Log the meter readings regularly (not necessary in
		systems with automatic recording and evaluation of
		operating data)
	PV array surface area	Heavy soiling?
		Leaves, bird droppings, air pollution or other types of soiling?
		Clean with copious amounts of water (use a water
		hose) and a gentle cleaning implement (a sponge),
		without using detergents
		Do not brush, or wipe the modules with a dry
		cleaning implement to avoid scratching the surface
		Are all modules still correctly fixed?
		Is the generator surface area subject to any
		mechanical stress? (e.g. as a result of a warped roof
		structure)
Every six months	PV combiner/junction box	Are there any insects/is there humidity in the
	(if present)	device? (if mounted outdoors)
		If possible, check fuses
	Surge arresters	Check after thunderstorms as well
		Surge voltage arrester intact (window white or red)?
	Cables	Look for charred spots, broken insulation and other
		kinds of damage (e.g. cables damaged by animals)
		Check the fixing points
Every three to four	Repeat the measurements	Only to be carried out by a trained professional
years	as during commissioning	
	Inverters in outdoor	Humidity may penetrate in spite of suitability for
	applications	outdoor applications
10 1	N. 1.1	Only to be controlled by a trained professional
If suspected	Modules	Peak output measurement by a trained professional
	PV combiner/junction box	Check string fuses
	AC protective equipment	Line circuit breakers, AC fuses and RCDs

PERIODIC MAINTENANCE AND UPKEEP CHECKLIST

Fault type PV modules Soliling Soliling Delamination Bypass diodes Control Defective modules Inverter Control Defective Short Control Control	Visual inspection X X X X X X X X X X X X X	Multimeter measurement X X X X X X X X X X X X X X	Earthing resistance measurement	Input/ output check X X X X X X X X	Insulation resistance measurement X X X	Over/ under voltage check X	LV curves X X X X X X X X X X	Inverter data readout check (X) (X) (X) (X) (X) (X) (X) (X)	Test the AC circuit circuit X X X X X	Grid analysis X X X X X X
Defective surge voltage protectors	X	X			X	X				
Increased earthing resistance			X							

FAULT TYPES AND THE CHECKS AND MEASURES TO DETECT THEM

SAFETY CONSIDERATIONS

The wiring used in PV systems must be properly selected for its intended use. Automotive or welding cabling cannot be used in PV systems despite their other dc applications. The wiring, due to its exposure to the harsh environment typical on a roof around PV modules, must be capable of dealing with excessive heat, moisture, and ultraviolet and infrared energy. It must be properly sheathed and/or rated for such uses. Proper ampacity and voltage requirements must be calculated and the wire and wiring devices will likely need to be derated for numerous reasons in a typical application.

Overcurrent protection in a dc system also differs from standard ac practices. All devices in the system must be protected from an overload, which results from sustained current beyond the rating of components, and a short circuit, which is caused by line-to-line or ground-to-line low resistance faults. An understanding of when to use fuses or circuit breakers that are designed for dc use is important.

System disconnects are also very important for the safety of the system especially when the public may come in contact with it. Allowing easy access to dc disconnects for each component in the system so that an individual, such as a firefighter in an emergency situation, can quickly remove power from the system or any of its components. Regular ac switches cannot generally be used unless specifically rated for dc applications and only if they are not to be used for load-break purposes. Many other factors that would likely only be recognized by a trained professional must also be taken into consideration. For example, do not install a disconnect on or around a battery compartment as a spark from the disconnecting action while under load could ignite explosive hydrogen gas released by the battery bank.

System and equipment grounding offers its own challenges with PV systems installed in the United States, which utilizes a grounded electrical grid. Proper ground-fault equipment must be used as well as surge and transient suppression for protection from electrical storms due to the likelihood of the system being the highest metallic structure in their vicinity.

ISPQ ACCREDITATION KEY POINTS

- The program shall be designed to prepare individuals with knowledge and skills required for a professional trade with the curriculum content following and approved task analysis.
- Curriculum shall have sufficient prerequisites to ensure that graduates have a predictable level of expertise.
- Facilities shall be sufficient and safe for the training.

- The organization has appropriate financial resources and that administrative and management procedures and policies are in practice; and written policies shall ensure the competence, impartiality, and integrity of the program.
- The instruction is presented in an organized and sequential learning format.
- The learning management system should provide the necessary assessment and reporting capabilities to monitor and track the learning process.
- Instructor provides timely and specific feedback.
- Learning shall provide frequent and meaningful interaction among learners, between learners and instructional material and between learners and the instructors.
- Assessment should be and integral part of the leaning experience.
- Advertising of any type is prohibited within the educational content.

NABCEP TASK ANALYSIS (APPROVED 10/18/06)

1. Working Safely with Photovoltaic Systems		
Task/Skill:	Skill Type:	Priority/ Importance:
As part of safety considerations associated with installing and maintaining PV systems, any PV installer must be able to:		
1.1 Maintain safe work habits and clean, orderly work area	Cognitive, Psychomotor	Critical
1.2 Demonstrate safe and proper use of required tools and equipment	Cognitive, Psychomotor	Critical
1.3 Demonstrate safe and accepted practices for personnel protection	Cognitive, Psychomotor	Critical
1.4 Demonstrate awareness of safety hazards and how to avoid them	Cognitive, Psychomotor	Critical
1.5 Demonstrate proficiency in basic first aid and CPR	Cognitive, Psychomotor	Very Important
The installer must be able to identify electrical and non-electrical hazards associated with PV installations, and implement preventative		
and remedial measures to ensure personnel safety:		
1.6 Identify and implement appropriate codes and standards concerning installation, operation and maintenance of PV systems and equipment	Cognitive, Psychomotor	Critical
1.7 Identify and implement appropriate codes and standards concerning worker and public safety	Cognitive, Psychomotor	Critical
1.8 Identify personal safety hazards associated with PV installations	Cognitive, Psychomotor	Critical
1.9 Identify environmental hazards associated with PV installations	Cognitive, Psychomotor	Very Important

2. Conducting a Site Assessment		
Task/Skill:	Skill Type:	Priority/ Importance:
In conducting site surveys for PV systems, the installer shall be able to:		
2.1 Identify typical tools and equipment required for conducting site surveys for PV installations, and demonstrate proficiency in their use	Cognitive	Very Important
2.2 Establish suitable location with proper orientation, sufficient area, adequate solar access and structural integrity for installing PV array	Cognitive	Very Important
2.3 Establish suitable locations for installing inverters, control, batteries and other balance-of-system components	Cognitive	Very Important
2.4 Diagram possible layouts and locations for array and equipment, including existing building or site features	Cognitive	Very Important
2.5 Identify and assess any site-specific safety hazards or other issues associated with installation of system	Cognitive	Very Important
2.6 Obtain and interpret solar radiation and temperature data for site for purposes of establishing performance expectations and use in electrical system calculations	Cognitive	Very Important
2.7 Quantify the customer electrical load and energy use through review of utility bills, meter readings, measurements and/or customer interview,	Cognitive	Important
2.8 Estimate and/or measure the peak load demand and average daily energy use for all loads directly connected to inverter-battery systems for purposes of sizing equipment, as applicable	Cognitive	Very Important
2.9 Determine requirements for installing additional subpanels and interfacing PV system with utility service, and/or other generation sources as applicable	Cognitive	Very Important
2.10 Identify opportunities for the use of energy efficient equipment/appliances, conservation and energy management practices, as applicable	Cognitive	Important

3. Selecting a System Design		
Task/Skill:	Skill Type:	Priority/ Importance:
Based on results from a site survey, customer requirements and expectations, the installer shall be able to:		
3.1 Identify appropriate system designs/configurations based on customer needs, expectations and site conditions	Cognitive	Very Important
3.2 Estimate sizing requirements for major components based on customer load, desired energy or peak power production, autonomy requirement, size and costs as applicable	Cognitive	Very Important
3.3 Identify and select major components and balance of system equipment required for installation	Cognitive	Very Important
3.4 Estimate time, materials and equipment required for installation, determine installation sequence to optimize use of time and materials	Cognitive	Important

4. Adapting the Mechanical Design		
Task/Skill:	Skill Type:	Priority/ Importance:
In adapting a PV system mechanical design, the practitioner shall be		
able to:		
4.1 Identify a mechanical design, equipment to be used and installation plan that is consistent with the environmental, architectural, structural, code requirements and other conditions of the site	Cognitive	Critical
4.2 Identify appropriate module/array layout, orientation and mounting method for ease of installation, electrical configuration and maintenance at the site	Cognitive	Critical

5. Adapting the Electrical Design		
Task/Skill:	Skill Type:	Priority/ Importance:
In adapting a PV system electrical design, the practitioner shall be able to:		
5.1 Determine the design currents for any part of a PV system electrical circuit	Cognitive	Critical
5.2 Select appropriate conductor types and ratings for each electrical circuit in the system based on application	Cognitive	Critical
5.3 Determine the derated ampacity of system conductors, and select appropriate sizes based on design currents	Cognitive	Critical
5.4 Determine appropriate size, ratings and locations for all system overcurrent and disconnect devices	Cognitive	Critical
5.5 Determine appropriate size, ratings and locations for grounding, surge suppression and associated equipment	Cognitive	Critical
5.6 Determine voltage drop for any electrical circuit based on size and length of conductors	Cognitive	Very Important
5.7 Verify that the array operating voltage range is within acceptable operating limits for power conditioning equipment, including inverters and controllers	Cognitive	Very Important
5.8 Select an appropriate utility interconnection point, and determine the size, ratings and locations for overcurrent and disconnect devices.	Cognitive	Critical

6. Installing Subsystems and Components at the Site		
Task/Skill:	Skill Type:	Priority/ Importance:
As part of the PV system installation process, the practitioner shall be		
<i>able to:</i> 6.1 Utilize drawings, schematics, instructions and recommended procedures in installing equipment	Cognitive	Critical
6.2 Implement all applicable personnel safety and environmental protection measures	Cognitive	Critical
6.3 Visually inspect and quick test PV modules	Psychomotor	Important
6.4 Assemble modules, panels and support structures as specified by module manufacturer or design	Psychomotor	Very Important
6.5 Install module array interconnect wiring, implement measures to disable array during installation	Psychomotor	Very Important
6.6 Complete final assembly, structural attachment and weather sealing of array to building or other support mechanism	Psychomotor	Critical
6.7 Install and provide required labels on inverters, controls, disconnects and overcurrent devices, surge suppression and grounding equipment, junction boxes, batteries and enclosures, conduit and other electrical hardware	Psychomotor	Critical
6.8 Label, install and terminate electrical wiring; verify proper connections, voltages and phase/polarity relationships	Psychomotor	Critical
6.9 Verify continuity and measure impedance of grounding system	Cognitive, Psychomotor	Very Important
6.10 Program, adjust and/or configure inverters and controls for desired set points and operating modes	Cognitive	Critical

7. Performing a System Checkout and Inspection		
Task/Skill:	Skill Type:	Priority/ Importance:
After completing the installation of a PV system, as part of system commissioning, inspections and handoff to the owner/operator, the practitioner shall be able to:		
7.1 Visually inspect entire installation, identifying and resolving any deficiencies in materials or workmanship	Cognitive, Psychomotor	Very Important
7.2 Check system mechanical installation for structural integrity and weather sealing	Cognitive, Psychomotor	Critical
7.3 Check electrical installation for proper wiring practice, polarity, grounding and integrity of terminations	Cognitive, Psychomotor	Critical
7.4 Activate system and verify overall system functionality and performance, compare with expectations	Cognitive, Psychomotor	Critical
7.5 Demonstrate procedures for connecting and disconnecting the system and equipment from all sources	Cognitive, Psychomotor	Critical
7.6 Identify and verify all required markings and labels for the system and equipment	Cognitive	Critical
7.7 Identify and explain all safety issues associated with operation and maintenance of system	Cognitive	Very Important
7.8 Identify what documentation is required to be provided to the PV system owner/operator by the installer	Cognitive	Very Important

8. Maintaining and Troubleshooting a System		
Task/Skill:	Skill Type:	Priority/ Importance:
In maintaining and troubleshooting PV systems, the practitioner shall be able to:		
8.1 Identify tools and equipment required for maintaining and	Cognitive,	Very
troubleshooting PV systems; demonstrate proficiency in their use	Psychomotor	Important
8.2 Identify maintenance needs and implement service procedures for	Cognitive,	Very
modules, arrays, batteries, power conditioning equipment, safety systems, structural and weather sealing systems, and balance of systems equipment	Psychomotor	Important
8.3 Measure system performance and operating parameters, compare with	Cognitive,	Very
specifications and expectations, and assess operating condition of system and equipment	Psychomotor	Important
8.4 Perform diagnostic procedures and interpret results	Cognitive,	Very
	Psychomotor	Important
8.5 Identify performance and safety issues, and implement corrective measures	Cognitive, Psychomotor	Critical
8.6 Verify and demonstrate complete functionality and performance of system, including start-up, shut-down, normal operation and emergency/bypass operation	Cognitive, Psychomotor	Critical
8.7 Compile and maintain records of system operation, performance and	Cognitive	Very
maintenance		Important